Unlock New Opportunities for Thought Leadership with SB Webinars

McGill Putting Its Bets on Metal Powder as the Fuel of the Future

While automakers such as Toyota, Tesla, Ford, Honda and General Motors are putting their bets on hydrogen and electricity to power future mobility, Canada’s McGill University thinks metal could be the key to a clean, low-carbon future.

While automakers such as Toyota, Tesla, Ford, Honda and General Motors are putting their bets on hydrogen and electricity to power future mobility, Canada’s McGill University thinks metal could be the key to a clean, low-carbon future.

For the last 20 years, researchers at McGill have been studying how metal powders, such as iron, could be used as a fossil-fuel alternative that produces zero carbon emissions. When burned, these powders are capable of producing more energy than an equivalent volume of gasoline. In lieu of carbon dioxide, the process releases only iron oxide, or rust, which is environmentally benign. What’s more, the exhaust can be collected and recycled back into iron using renewable energy sources, creating a sustainable, closed loop system.

“We have to expand our horizons, our vision of what a fuel is, and what are the possibilities. And when we look big enough, I think we find that metals are going to be the solution,” said researcher Jeffrey Bergthorson. “I want a renewable, energy-rich future and not an energy-poor future.”

Bergthorson and fellow researcher Andrew Higgins envision ships and trains to be the first to utilize powdered metal fuel, with smaller vehicles, such as cars, to follow. Would the new fuel mean the end of the highly controversial Alberta tar sands? The answer is unclear, but Bergthorson believes that the widespread use of the new fuel could give the Canadian economy a major boost — the country is rich in metals, which could prove to be a significant advantage.

While McGill’s experiment marks an important step forward for the future of metal fuel, researchers admit that the road to large-scale adoption will be a long one. More work needs to be done to advance the technology, but a lack of resources — namely the availability of researchers — presents a significant obstacle.

“To put it all together into a real technology, we’re going to need a lot of other people to help us on this,” said Higgins. “We hope people will continue to collaborate with us to keep advancing the technology.”

Upcoming Events

October 13-16, 2025
SB'25 San Diego
US Event
More Information

Thursday, December 5, 2024
Circularity by Design: How to Influence Sustainable Consumer Behaviors
Webinar
Sponsored by Sustainable Brands
More Information

December 11-12, 2024
SB Member Network: Shifting Customer Behavior and Demand December Member Meeting
Member Event
Sponsored by Amazon
More Information

Related Stories

AI: The Good, the Bad, the Sketchy and the Lifesaving ARTIFICIAL INTELLIGENCE FOR SUSTAINABILITY
AI: The Good, the Bad, the Sketchy and the Lifesaving
Redesigning the Food System for Resilience: Lessons from the Field REGENERATION & RESILIENCE
Redesigning the Food System for Resilience: Lessons from the Field
Bioengineering, Biomimicry Spawn Novel Solutions to Marine Plastic Pollution INNOVATION & TECHNOLOGY
Bioengineering, Biomimicry Spawn Novel Solutions to Marine Plastic Pollution
Helios: An Out-of-This-World Solution for Decarbonizing Steelmaking INNOVATION & TECHNOLOGY
Helios: An Out-of-This-World Solution for Decarbonizing Steelmaking
Unilever Refreshing Fragrance Formulas with Upcycled Flowers INNOVATION & TECHNOLOGY
Unilever Refreshing Fragrance Formulas with Upcycled Flowers
Bioengineered Plants Offer Superior Indoor Air Purification INNOVATION & TECHNOLOGY
Bioengineered Plants Offer Superior Indoor Air Purification