Last Chance to Join Us at SB'24 San Diego!

University of Missouri Researchers Developing Biodegradable Displays for Electronics

Americans, on average, replace their mobile phones every 22 months, junking more than 150 million phones a year in the process. When it comes to recycling and processing all of this electronic waste, the World Health Organization reports that even low exposure to the electronic elements can cause significant health risks. Now, University of Missouri researchers are on the path to creating biodegradable electronics by using organic components in screen displays, which could one day help reduce electronic waste in the world’s landfills.

Americans, on average, replace their mobile phones every 22 months, junking more than 150 million phones a year in the process. When it comes to recycling and processing all of this electronic waste, the World Health Organization reports that even low exposure to the electronic elements can cause significant health risks. Now, University of Missouri researchers are on the path to creating biodegradable electronics by using organic components in screen displays, which could one day help reduce electronic waste in the world’s landfills.

“Current mobile phones and electronics are not biodegradable and create significant waste when they’re disposed,” said Suchismita Guha, professor in the Department of Physics and Astronomy at the MU College of Arts and Science. “This discovery creates the first biodegradable active layer in organic electronics, meaning — in principle — we can eventually achieve full biodegradability.”

Guha, along with graduate student Soma Khanra, collaborated with a team from the Federal University of ABC (UFABC) in Brazil to develop organic structures that could be used to light handheld device screens. Using peptides, or proteins, researchers were able to demonstrate that these tiny structures, when combined with a blue light-emitting polymer, could successfully be used in displays.

“These peptides can self-assemble into beautiful nanostructures or nanotubes, and, for us, the main goal has been to use these nanotubes as templates for other materials,” Guha said. “By combining organic semiconductors with nanomaterials, we were able to create the blue light needed for a display. However, in order to make a workable screen for your mobile phone or other displays, we’ll need to show similar success with red and green light-emitting polymers.”

Opening access to sustainable design

Join us at SB'24 San Diego (October 14-17) as Prakash Arunkundrum — Logitech's Head of Global Operations and Sustainability — shares insights from search for next-generation materials, components and processes to develop superior products with sustainability as a high design priority.

The scientists also discovered that by using peptide nanostructures they were able to use less of the polymer. Using less to create the same blue light means that the nanocomposites achieve almost 85 percent biodegradability.

“By using peptide nanostructures, which are 100 percent biodegradable, to create the template for the active layer for the polymers, we are able to understand how electronics themselves can be more biodegradable,” Guha said. “This research is the first step and the first demonstration of using such biology to improve electronics.”

The study, “Self-Assembled Peptide-Polyfluorene Nanocomposites for Biodegradable Organic Electronics” recently was published as the inside cover article in Advanced Materials Interfaces. The work was supported by the National Science Foundation (Grant IIA-1339011) and The Brazilian National Council for Scientific and Technological Development (CNPq) (400239/2014-0).

Tommi White, assistant research professor of biochemistry, and Thomas Lam, both with the Microscopy Core Research Facility at MU, contributed to the study. Other collaborators include Wendel A. Alves and Thiago Cipriano, professors of supramolecular chemistry at UFABC; and Eudes E. Fileti, a professor of physics at the Federal University of São Paulo, Brazil.

A number of efforts are now underway to minimize electronic waste, particularly with regards to smartphones, around the world:

  • In February, Sprint launched its inaugural Smartphone Encore Challenge, which called upon students to come up with innovative ways to retrofit their old devices that could be scaled into a commercial business model. In April, Sprint announced the winning teamTouchCart, from the University of California Berkeley.
  • Having achieved its 2010 goal to collect two million pounds — or 1,000 tons — of electronic waste in communities it serves by the end of 2015 eight months early, Verizon announced in May a new goal to recycle an additional two million pounds of e-waste by 2020.
  • Earlier this month, UK waste-reduction charity WRAP launched a first-of-its-kind project to explore commercial opportunities for harvesting critical raw materials (CRMs) and precious metals from everyday end-of-life electronic products. The project will link collection methods with recovery success.
  • And Fairphone’s Fairphone 2 — designed to be longer lasting and repairable as well as ethically sourced — is due to start shipping in December.

Upcoming Events

October 14-17, 2024
SB'24 San Diego
US Event
More Information

December 11-12, 2024
SB Member Network: Shifting Customer Behavior and Demand December Member Meeting
Member Event
More Information

March 18-19, 2025
SB'25 Tokyo Marunouchi
More Information

Related Stories

BMW, Volkswagen Eyeing Plant-Based Future for Car Interiors MATERIALS & PACKAGING
BMW, Volkswagen Eyeing Plant-Based Future for Car Interiors
How Does Consumer Behavior Challenge the Circular Economy? MATERIALS & PACKAGING
How Does Consumer Behavior Challenge the Circular Economy?
erthos: Giving the Plastics Industry an AI-Driven, Biobased Upgrade MATERIALS & PACKAGING
erthos: Giving the Plastics Industry an AI-Driven, Biobased Upgrade
Nissan’s ‘Cool Paint’ Will Cut Car-Interior Heat, Energy Use INNOVATION & TECHNOLOGY
Nissan’s ‘Cool Paint’ Will Cut Car-Interior Heat, Energy Use
MIT Team Creates Clean Hydrogen with Seawater, Soda Cans, Caffeine INNOVATION & TECHNOLOGY
MIT Team Creates Clean Hydrogen with Seawater, Soda Cans, Caffeine
Sustainable Sailing Puts Its Sail-Recycling Process to Sweet, New Use MATERIALS & PACKAGING
Sustainable Sailing Puts Its Sail-Recycling Process to Sweet, New Use