It is no secret that transportation is one of our biggest polluters and
contributors to climate change — it is responsible for 20 percent of all carbon
dioxide
emissions
globally, with the largest majority emitted by road transportation. Despite
this, private car
ownership
is on the rise; 91.5 percent of
households
in the US had access to at least one vehicle in 2020, up from 90.82 percent
in 2015. But it’s clear that a sustainable future for travel cannot be dependent
on traditional, gasoline-powered vehicles.
Consumers understand the need for a shift to electric vehicles (EVs) — 75
percent of US drivers
agree that EVs are the future; but the majority of them don’t seem to be ready
for them in the present, as most continue to favor the familiar
combustion engine.
One of the most critical barriers preventing consumers from buying EVs is ‘range
anxiety’ — the fear of running out of power and not being able to find a
charging point. Automakers from Ford and Jaguar Land Rover to Porsche and Tesla are actively working to advance manufacturing and capabilities for EV batteries; but in the meantime, recent Volvo research found that range anxiety was still the top
barrier to purchasing an EV for 58 percent of
drivers
who had never driven an EV.
Hoping to help ease this anxiety is StoreDot — an
Israeli EV battery startup that is showcasing the potential of
extra-fast-charging (XFC) battery power to disrupting the EV market. Thanks to a
unique, interdisciplinary approach to the issue of battery life, StoreDot has
reinvented the battery with a breakthrough that might leapfrog EVs into the
mainstream.
OK, Now What?: Navigating Corporate Sustainability After the US Presidential Election
Join us for a free webinar on Monday, December 9, at 1pm ET as Andrew Winston and leaders from the American Sustainable Business Council, Democracy Forward, ECOS and Guardian US share insights into how the shifting political and cultural environment may redefine the responsibilities and opportunities for companies committed to sustainability.
In batteries, charge is held in the electrodes — the cathodes and anodes. When
something is being powered, ions move from anode to
cathode; then,
when the battery is recharged, ions return to cathode from anode. StoreDot’s XFC
batteries work by replacing the traditional Li-ion graphite anode with
active-material silicon nanoparticles, which accelerate diffusion. Silicon
anodes are absorbent — and can accept more lithium ions than graphite, which
causes faster recharge — resulting in more charge and longer battery life.
“The surface area where Li-ions can enter a 3D structure of silicon — our active
material — is much larger,” Doron Myersdorf, CEO and co-founder of StoreDot,
told Sustainable Brands™. “So, imagine the surface area of a football
field with nanoparticle capabilities, compared to a credit card without it. The
larger surface area allows for free flow of ions in a safe and fast manner,
which is not feasible otherwise.”
The breakthrough was inspired by work at Tel Aviv
University on Alzheimer's disease. There, they
investigated peptides in the ‘Amyloid fibrils’ — the brain’s neural network —
associated with brain degradation. By artificially synthesising a variety of
molecules, they demonstrated the potential of organic molecules for energy
storage in nanoscale structures.
“The number-one problem for adoption of electric vehicles is the speed of
charging; and I saw a path to change the game using the XFC technology,”
Myersdorf explains. “We identified organic materials and small molecules that
can be beneficial in storing energy; then, created a large experiment to
identify the most effective materials that can be integrated into the Li ion
batteries.”
StoreDot’s breakthrough was made possible by its interdisciplinary team of
scientists from different academic fields.
“The best way to break the limits of what is known in science is the combination
of different disciplines,” Myersdorf told us. “That way, much of the advanced
methodologies and materials can be synergistically integrated into the design of
the new battery and that’s what enables breakthroughs.”
The innovation of combining organic and inorganic molecules can be a long
process; and it took StoreDot, founded in 2012, almost a decade to materialize
the configuration of the battery and materials.
“The speed of charge was very limited in traditional graphite-based anodes.
StoreDot shows how you can replace the graphite with silicon, with combined
protection from organic additives and coatings,” Myersdorf says. “Silicon has 5x
energy compared to graphite; however, it needs to be well controlled in terms of
‘swelling’.”
StoreDot’s reinvented batteries, augmented by organic molecules and optimized by
AI, will help advance the shift away from combustion engines to a less
carbon-filled future. Not only will EVs charge faster, but StoreDot is pushing
for the longevity of EV batteries — the company ensures that the batteries can
retain 70 percent of their original capacity after 1,700 charging cycles; and it
is now developing ‘self-repairing’ battery
cells.
StoreDot, valued at $1.6 billion, has a wide variety of
investors — including
automakers VinFast (Vietnamese EV manufacturer) and
Daimler, Russian oligarch Roman Abramovich, the Wertheimer
family
(French billionaires and co-owners of Chanel), BP, Samsung Ventures,
Singulariteam and electronics giant TDK.
With the solid state battery market estimated to reach $3.4 billion globally
by 2030 at 18 percent
CAGR,
investments like these are crucial to promote the necessary R&D to meet future
market demand.
Last month, Volvo Cars Tech Fund also invested in
StoreDot.
Volvo Cars was the first established car manufacturer to commit to all-out
electrification,
and aims to be a pure electric car company by 2030. This collaboration should
accelerate perfection and scaling of StoreDot’s technology — and with it, global
growth of EV adoption.
Myersdorf said the Volvo investment “opens the access for advanced battery and
vehicle teams across the globe, and allows entry into the NorthVolt production
facility
— which is part of the Volvo joint ventures for volume battery deliveries.”
In the meantime, StoreDot is on track to meet its first milestone, set for
2024, to mass-produce and
deliver battery cells that allow for 100 miles of driving after only 5 minutes
of charging — and by 2028, just 3 minutes.
Get the latest insights, trends, and innovations to help position yourself at the forefront of sustainable business leadership—delivered straight to your inbox.
Scarlett Buckley is a London-based freelance sustainability writer with an MSc in Creative Arts & Mental Health.
Published May 12, 2022 2pm EDT / 11am PDT / 7pm BST / 8pm CEST